Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Heng-Yu Qian, ${ }^{\text {a }}{ }^{*}$ Xiu-Ling Cui ${ }^{\text {b }}$ and Zhi-Gang Yin ${ }^{\text {a }}$

${ }^{\text {a School }}$ of Materials \& Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China

Correspondence e-mail:

hengyuqian@yahoo.com

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.056$
$w R$ factor $=0.127$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Ferrocenyl- N-(1-phenylethyl)ethylamine

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}\right)\right]$, has been synthesized as a prochiral agent by refluxing equimolar mixtures of acetylferrocene and 1-phenylethylamine followed by reduction with sodium borohydride. The crystal structure exhibits normal geometrical parameters. The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle is $118.6(4)^{\circ}$ due to the steric effect of the benzene ring and the substituted ferrocene ring.

Comment

Functionalized ferrocene derivatives are widely used ligands in many fields, such as asymmetric catalysis (Hyshi et al., 1988; Pastor \& Togni, 1989) and coupling reactions (Trost \& Vranken, 1996). The synthesis of (R, R)- N-(1-phenylethyl)-1ferrocenylethylamine has been reported by David et al. (1990), while the structure of α-ferrocenyl- N-(1-phenylethyl)benzylamine (Yin \& Qian, 2005) has been reported by our group. We report here the results of a single-crystal X-ray diffraction analysis of the title compound, (I). The molecular structure of (I) is shown in Fig.1. Selected bond lengths and angles are given in Table 1. The cyclopentadienyl rings of the ferrocene fragment are planar and parallel. The $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 20$ angles are $113.9(4)^{\circ}$ and $110.8(4)^{\circ}$ respectively. In the crystal structure, molecules are linked by C $\mathrm{H} \cdots \pi$ interactions (Table 2, Fig. 2). C $-\mathrm{H} \cdots \pi$ interactions are formed between C4 and C17, which act as the hydrogen-bond donors, and the phenyl ring ($\mathrm{C} 14-\mathrm{C} 19$) and the ferrocene ring (C1-C5), respectively, which act as acceptors (Steiner et al., 1995).

Fe

(I)

Experimental

Compound (I) was prepared according to a literature method (David et al., 1990). Acetylferrocene was converted to the ferrocenylimine in

Received 28 October 2005 Accepted 14 November 2005 Online 19 November 2005
87% yield by treatment with 1-phenylethylamine in dry toluene solvent for 20 h followed by reduction with sodium borohydride in methanol solvent at 273 K for 20 h . The product was separated by flash chromatography on silica gel using chloroform:ethyl acetate (4:1) as eluant and crystallized from a dichloromethane-hexane solution in 72% yield by slow evaporation of the solvent. Spectroscopic analysis: IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): 3431, 3079, 2959, 1604, 1488, 1447, 1130, 1007, 834; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, δ, p.p.m.): 7.26-7.37 ($m, 5 \mathrm{H}$), 4.10$4.16(m, 4 H), 4.07(s, 5 H), 3.81(d \times d, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}$ and $J=12.8 \mathrm{~Hz})$ $3.33(d \times d, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}$ and $J=13.4 \mathrm{~Hz}) 1.41(d, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.24$ ($d, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$). Analysis: calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{FeN}: \mathrm{C} 72.07, \mathrm{H}$ 6.91 , N 4.20%; found: C 71.85, H $7.02, \mathrm{~N} 4.53 \%$.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}\right)\right]$
$M_{r}=333.24$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=7.3401$ (15) \AA
$b=11.688$ (2) A
$c=19.841$ (4) \AA
$V=1702.1(6) \AA^{3}$
$Z=4$
$D_{x}=1.300 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.797, T_{\text {max }}=0.857$
7239 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.127$
$S=1.01$
3222 reflections
200 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 1335
reflections
$\theta=2.2-25.3^{\circ}$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, orange
$0.27 \times 0.20 \times 0.18 \mathrm{~mm}$

3222 independent reflections
2629 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 9$
$k=-14 \rightarrow 14$
$l=-24 \rightarrow 24$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.06 P)^{2}\right. \\ & +0.66 P]\end{aligned}$
$+0.66 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.56 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1291 Friedel pairs
Flack parameter: 0.08 (3)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C10-C11	$1.481(7)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.510(7)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.545(6)$	$\mathrm{C} 13-\mathrm{C} 20$	$1.523(7)$
$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$115.0(5)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$119.4(5)$
$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 20$	$107.8(4)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$	$121.8(5)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 20$	$110.8(4)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots C g 3^{\mathrm{i}}$	0.98	2.99	$3.819(6)$	143
$\mathrm{C} 17-\mathrm{H} 17 A \cdots C g 1^{\mathrm{ii}}$	0.93	3.05	$3.932(6)$	158

Symmetry codes: (i) $-x+\frac{3}{2},-y, z-\frac{1}{2}$; (ii) $-x+\frac{5}{2},-y, z+\frac{1}{2} . C g 1$ and $C g 3$ are the centroids of rings $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 14-\mathrm{C} 19$, respectively

All H atoms were placed in calculated positions and were refined, using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1
The structure of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 2
Packing of (I). Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors express their deep appreciation to the Start-up Fund for Ph. D. of Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001) and the Start-up Fund for Master of Natural Scientific Research of Zhengzhou University of Light Industry (No. 000455).

References

Bruker (2000). SMART, SAINT, SADABS, and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
David, D. M., Kane-Maguire, A. P. \& Pyne, S. G. (1990). J. Chem. Soc. Chem. Coттии. pp. 889-890.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hyshi, T., Kanehira, T., Hagihara, T. \& Kumada, M. (1988). J. Org. Chem. 53, 113-120.
Pastor, S. D. \& Togni, A., (1989). J. Am. Chem. Soc. 111, 2333-2334.
Steiner, T., Starikov, E. B., Amado, A. M. \& Teixeira-Dias, J. J. C. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1321-1326.
Trost, B. M. \& Vranken, D. L. (1996). Chem. Rev. 96, 395-422.
Yin, Z. G. \& Qian, H. Y., (2005). Acta Cryst. E61, m2351-m2352.

